

"I don't love studying. I hate studying. I like learning. Learning is beautiful."

"An investment in knowledge pays the best interest."

Hi, My Name is

Mathematical Science for CSIR NET *Dips Academy*

Unif-1:
1. Compler Numbers System
2. Funchions of complex Variables (w=f(z))
3. Limit, Conlinearly, Diffundically, Lf(0))
4. Anelylicityly, and its properties
5. Singularities
1. For almost all of complex integers
1. For almost all of complex integers
1. For common all of complex integers
1. For also $l = 1$ and l

 \mathcal{L}^{avg}

 $\label{eq:2} \mathcal{L}^{(k)}$

 \mathbb{R}^{2n}

 $\hat{\mathcal{A}}$, $\hat{\mathcal{A}}$

$$
4 - AfbIicalion of Lawsonils and Tagloss's expansion(a) Zcos of angularatic function(b) Evelension of Lioville's theorem(c) singularities oscillation(d) Residue at $z = a$: Res[flz], a]
$$

$$
\frac{\frac{\text{Unif} - \frac{1}{11}}{5 \text{periodal}}}{1. \text{Measured}} \text{The right of the first line.}
$$

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2\pi}}\frac$

Unif.- \overline{V}	Conformed	mephing
t	Fundamental of Conformed	
g	Bilines of Mobvious Transforms	
\downarrow Lincar Fracifinal Toansformation		
\downarrow Lincar Fracifinal Toansformation		
J	Marimum / Minimum Modules Poincible	
q	Schwarz's Lemma and its application.	

 $\overline{\mathrm{RMS}}$

 $f^{\sigma_{\rm m}}$

 \sim

 $\overline{\mathcal{F}^{\text{max}}_{\text{max}}}$

 $\hat{\mathcal{A}}$,

 $\frac{1}{2} \frac{1}{2} \frac{$

$$
Z = -1 + 4i
$$

\n
$$
+ and = \left| \frac{4}{-1} \right| \quad \frac{1}{2} \quad
$$

 $\label{eq:2.1} \frac{1}{2} \int_{\mathbb{R}^3} \frac{1}{\sqrt{2}} \, \mathrm{d} \mu \,$

$$
\arg z = \{Ay^{z} + 2nx : n \in \mathbb{Z}\}\
$$
\n
$$
\# |z| = Absolute value of z
$$
\n
$$
= \int \frac{D}{x^{2} + y^{2}} = \gamma.
$$
\n
$$
\theta = \begin{cases}\n0 & x > 0 \quad \forall j \ge 0 \\
\frac{\pi}{2} & x > 0 \quad \forall j \ge 0 \\
\frac{\pi}{2} & x = 0 \quad \forall j \ge 0 \\
\pi - \frac{\pi}{2} & x = 0 \quad \forall j \ge 0\n\end{cases}
$$

$$
\begin{cases}\n\pi & x < 0, y = 0 \\
-\pi + 4a^{\gamma+1} \frac{y}{k}\n\end{cases}
$$
\n
$$
\begin{cases}\nx < 0, y < 0 \\
x > 0, y < 0 \\
-\frac{\pi}{2} \\
-4a^{\gamma-1} \frac{y}{k}\n\end{cases}
$$
\n
$$
x > 0, y > 0\n\end{cases}
$$

$$
\begin{array}{lll}\n\text{#} & \text{if } A_{ij} \leq D \text{ } \text{ } |Z| = \gamma \\
\downarrow \text{lim } & Z = \gamma c^{i\theta} \\
&= \gamma c^{i\theta} \text{ } |A_{ij} \text{ } |Z| = \gamma \\
&= \gamma c^{i\theta} \text{ } |A_{ij} \text{ } |Z| \\
&= \gamma c^{i\theta} \text{ } |A_{ij} \text{ } |Z| = \gamma \\
&= \gamma c^{i\theta} \text{ } |A_{ij} \text{ } |Z| = \gamma\n\end{array}
$$

$$
\begin{array}{rcl}\n\text{L}_{3} & z & = & \text{L}_{3} \left(\delta c^{i\theta} \right) \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta} \\
& = & \text{L}_{3} \delta + \text{L}_{3} \epsilon^{i\theta
$$

Table: 2.1.
$$
\int \sqrt{2} (z, z_L) \, \text{mag} \, \text{mol}
$$
 & $\int \sqrt{2} (z, z_L + \sqrt{2}) (z_L + \sqrt{2})$

 \mathcal{E}^{max} :

 $\mathbb{R}^{2\pi n}$

 $\mathcal{P}^{\mathcal{O}}$

 $\mathcal{P}^{\mathcal{P}^{\mathcal{P}}}$

 \mathbb{R}^{2n} .

 \mathcal{P}^{θ}

 $\frac{1}{\sqrt{2}}\sum_{i=1}^{n-1}\frac{1}{i} \sum_{j=1}^{n-1} \frac{1}{j} \sum$

 $\label{eq:1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)$

$$
= e^{-\frac{\pi}{4}} \cos(\ell_{\theta} J_{\mathcal{L}}) + i e^{-\frac{\pi}{4}} \sin \ell_{\theta} J_{\mathcal{L}}
$$

$$
\therefore \quad \ell_{\theta} \lfloor \ell_{\theta} V \cdot \mathfrak{0} + (I + i)^{2} \rfloor = e^{-\frac{\pi}{4}} \cdot \cos \ell_{\theta} J_{\mathcal{L}}.
$$

$$
\begin{aligned}\n\overrightarrow{e} \cdot \overrightarrow{v} \cdot \overrightarrow{v} \cdot \overrightarrow{d} \cdot \overrightarrow{i} &= e^{i\sqrt{d} \cdot \overrightarrow{i}} \\
&= e^{i\sqrt{d} \cdot \overrightarrow{d}} \qquad \left(\begin{array}{c} \therefore \sqrt{d} \cdot \overrightarrow{i} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \overrightarrow{i} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \overrightarrow{j} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \overrightarrow{j} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \overrightarrow{j} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \overrightarrow{j} \\
 \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d}} \\
 &= \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d}} \\
 &= \frac{1}{2} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt{d} \cdot \sqrt
$$

Note:	
①	$e^{i\kappa} = \cos \kappa + i \sin \kappa, \quad x \in \mathbb{R}$
1.1	$e^{i\kappa} = \cos \kappa + i \sin \kappa, \quad x \in \mathbb{R}$
③	$ e^{i\kappa} = 1$ $i, x \in \mathbb{R}$
1.1	$2e^{i\kappa} = 1$ $i, x \in \mathbb{R}$
1.2	1.3
2.3	1.4
2.4	1.5
2.5	2.6
2.6	2.7
3.7	3.7
4.7	1.6
5.7	2.7
6.7	1.6
7.7	1.6
8.7	1.6
9.7	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.1	1.6
1.	

 $\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
e^{z} = e^{\kappa + i y}
$$

\n
$$
= e^{\kappa} \cdot e^{i y}
$$

\n
$$
= e^{\kappa} \cdot e^{i y}
$$

\n
$$
= e^{\kappa} \cdot e^{i y}
$$

\n
$$
Re e^{z} = e^{\kappa} \cdot e^{y}
$$

\n
$$
Im e^{z} = e^{\kappa} \cdot sin y
$$

 $Inder:-$

1. Vector Spaces and Sub-Spaces (Fundamental) 2. Spanning (Generation) of Vector-Spaces 3. Bases and Dimensions: 4. More on Subspeces * Direct Sum $*$ $\mathfrak{g}_{\text{uodien}}$ Spaces 5. Homo-morphism/ Lineer Transformation 6. Linces Algebra (i.e, Lincas Operation and Algebra) 7. Matrix of Lincer Transformation Basic Properties of Matrices δ . 9. System of Lincer Equations 10. Eigen Values and Eijen Vectors of a L.D.. 11. Diegonelisation of Matrices 18. Joseph Canonical Form 13. Quadratic Form 14. Inner Product Spaces 15. Lincar Functionals 16. Appendix

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\,d\mu\,.$ $\langle \cdot, \cdot \rangle$

€

Vector Species and Sub. Spaces! HELlernal Composition: Let $f: A \times B \longrightarrow C$ adopt * for $f(e, t) = a * b$ $\psi(e, t) \in AxB$ $i.e, if f(e,b) = C$ We was the $a * b = c$ * is celled an externel composition. (NW AfB inf_{x} $if A = B = C \implies$ is Binery Operation ore internal composition. $3 = R[x] - 15$ $\frac{e_{i}}{e_{i}}$ $A = \emptyset$ $C = M\cup\{0\}$ define $f: A \times B \longrightarrow C$ $f(d, p(x)) = deg(d, p(x))$ $\underline{\cdots}$ $f: 7 \times 9^* \longrightarrow 9^*$ $f(d, a) = Q^d$ $d * a = a^d$

C

Ć

 $\ddot{\mathcal{S}}$

3

3

3

 $\ddot{\mathbf{S}}$

 $\ddot{}$

 \Im

 \bigcup

٣

 $\ddot{3}$

 $\ddot{ }$

JJJJ

 $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}$

Vector	Spec- tr	Spec- tr	Rec- $$																																																			
--------	------------	------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------

CONCIL

C C

CONCIL

C

 \bullet

 $\dot{\bullet}$

 \bullet

 \bullet

The elements of V are called vectors and the
\nof F are scalars, we may also think in the way,
\nthe elements of V are objects and both of F are
\nmultiples:

\nH. If the iduality of V, +) will be released as zero
\nwech's and demidody 0.

\nAnd DCF is called 'D' scalar.

\nH. Scales is an always just kef+ on the left of vectors.

\nH. If U, D.X = D. # X e V, D F.

\n(ii) c. D = D. # c. F.

\n(iii)
$$
(-1) \cdot X = -X
$$
,
$$
-(F + 1) \cdot X = -X + \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1}{2} \cdot F + 1
$$
,
$$
F(X, Y) = \frac{1
$$

ŀ

,

 \mathbf{I}

 $\overline{1}$

 $\mathcal{L}_{\mathcal{L}}$

$$
\frac{D\alpha k}{B.D. \text{ } \text{on } V} = \frac{D\alpha k}{\alpha^2 + \beta^2 | \alpha^2 | \alpha^3 |}
$$
\n
$$
B.D. \text{ } \text{on } V} = \{ (r, +, \cdot) \text{ i.e. } \alpha \text{ if } \alpha \text{ is } \alpha \text{ if } \
$$

 $\lfloor 1 \cdot i \rfloor \lfloor d \cdot p \rfloor / X = X^{d/p}$ $d \cdot L \beta \cdot \chi$ = d. X β = $\left(\begin{array}{cc} x & p \\ y & p \end{array} \right)$ = $\begin{array}{cc} x & p \end{array}$ = $\begin{array}{cc} x & p \end{array}$ $(i \vee)$ $1 \cdot \hat{X} = X^{i} = X$

Let
$$
(R, +, \cdot)
$$
 be lim
\n $lim \int V = R \Rightarrow (V, +) is an Problem Jwe$
\nLet $F \leq R$ $s \cdot + \cdot = \text{ is a field.}$
\n $detine f: FXV \longrightarrow V$
\n $ay + (d, x) = d \cdot X$
\n $with defined as d, X \in R$.

as $\forall d_1 \ni f \vdash r X, \forall c \lor \Rightarrow d_1 \not g_2 \lor \neg \lor f \in \mathcal{R}$ N and $(P, 1, .)$ is γ ing => (i) $\sqrt{(1 + p) \cdot x} = d \cdot x + p \cdot x$ (ii) d. $1x+1)=d \cdot x + d \cdot y$ (iii) (-4.8)

$$
\frac{c_{12}3}{\sqrt{2}} \text{Let } (R_{1}+1) = (Z_{10} + I_{10} + X_{10})
$$
\n
$$
= \sqrt{V_{13} \text{det}(200 \text{ J})}
$$
\n<math display="block</math>

 $\tilde{\Xi}$

 \bullet

¢

 ϵ

 \bullet

 \bullet

 \bullet

 ϵ

 ϵ

 ϵ

 ϵ

 ϵ

 \bullet

 \bullet

 ϵ

 $\mathbf c$

 ϵ

 $\hat{\mathbf{c}}$

 ϵ

 $\ddot{\epsilon}$

 $\mathbf c$

Jai Maa Saraswati

Set: - A collection of well defined distinct objects is defined as a set. By well destined We mean, there is no contusion or ambiguity * If cardinality of A is n i.e, Al=n then $|P(A)| = 9^n$. $Proof:$ Let $[A]=\eta$, then No. of subsets of A having no element = ${}^{\eta}C_{0}$ $\langle \langle f \rangle \rangle$ No. of subscts of A having nelement="Cn We have, ${}^{n}C_{6} + {}^{n}C_{1} + \cdots + {}^{n}C_{n} = |P(A)|$ -- (1) By Binomial Heorem, $+$ $n c_n$ χ^{n} $\left(\frac{1}{2}\right)$ $(1+x)^{n} = n_{C_{o}} + n_{C_{1}}x +$ D_n comparing $D \nleftrightarrow D$. $w \cdot f \cdot f \sim 1$ $\left(\left(\begin{array}{c} p(A) \end{array}\right) = \left(\begin{array}{c} H \end{array}\right)^n = g^n$.

 \prod nd menthod: Let $A = \{x_1, x_2, ..., x_n\}$ inclusion exclusiven x ways $= 2x1 \times -12$ \therefore $|P(A)|$ η dimes $=2$ Let A be the set having containing (2n+1) elements, then the number of subsets of A howing more than nelements is $(6 / z^h)$ (a) g^{n-1} 4727 $(C \mid x^{n+1})$ Jolⁿ! ${}^{(2n+1)}C_{0} + {}^{(2n+1)}C_{1} + \cdots + {}^{(2n+1)}C_{n} + {}^{(2n+1)}C_{n+1} + \cdots + {}^{(2n+1)}C_{2n+1}$ $=$ y^{3n+1} \therefore $\alpha^{n+1}C_n = \alpha^{n+1}C_{n+1}$ $\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}$ $\int_{0}^{9.94}$ \int_{0}^{1} = $^{9.94}$ $\int_{9.4}^{9}$ $2d = 2^{2n+1}$ ζ^2 $\alpha = 2^{2n}$ $A_y - (d)$

Carlessian Product:	
Let A $\neq B$ $\neq 0$	from embig
sets	$dcfine$ $A \times B = \{a, b\}$
Then, AXB is defined as Carlesien produced of	
$A \neq B$.	
$g.f.k.r$ $A \circ B$ is defined as Carlesien produced of	
$AXB = \varphi$.	
$g.f.k.r$ $A \circ B$ $B \circ s$ $emf(y, A)$	
$AXB = \varphi$.	
$\frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}$	
$\frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}$	
$\frac{1}{1}, \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1} = \frac{1}{1}, \frac{1}{1}$	
$\frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{1}$	
$\frac{1}{1}, \frac{1}{1}, \frac{1$	

 $\bigcup_{i=1}^{n}$

نی ن ی

りょう

 3
 3
 3
 3

J

 \overline{z}

 $\overline{}$

 \mathfrak{I}

 $\overline{\mathbf{C}}$

 $\overline{ }$

 \mathbf{z}

 $\overline{\mathbf{z}}$

 \bullet

 \bigoplus

 \mathbf{z}

 \blacktriangleright

 \bullet

 \bullet

 \rightarrow

 $\overline{}$

 \rightarrow

 \Rightarrow

 \blacktriangleright

 \Rightarrow

E
O

 $\overline{}$

 $\frac{1}{2}$

 $\frac{1}{2}$.

 \overline{a}

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

l,

 \cdot

1	Reflexive well:
Let A be any such and S B A X	
then S is said to be reflexive well if	
I C S	
ey: S = { (1,1), (2,2), (3,3), (1,2)}	
$S = { (1,1), (2,2), (3,3), (1,2)}$	
$S = { (1,1), (2,2), (3,3), (1,2)}$	
Let A is a non-adjoint	
Let A is a non-adjoint	
Find a non-adjoint	
Note: The following problem of the graph	
Note: The following problem of the graph	
10	11
11	11
12	13
13	14
14	15
15	16
16	17
17	18
18	19
10	11
11	11
12	10
13	10
14	11
15	12
16	13
17	15
18	19
19	10
10	11

 \mathfrak{p}

 $\overline{}$

 $\overline{}$

 \overline{a}

 \Rightarrow

 \mathbf{C}

 \mathbf{C}

 \rightarrow

 $\mathbf{\hat{z}}$

 λ

 \blacktriangleright

 λ

 $\pmb{\rangle}$

Ì

e.g.
$$
A = \{1,3,3\}
$$

\n $S = \{(1,1), (1,2), (2,3)\}\times$
\n $S = \{(1,2), (3,3)\}\times$
\n $S = \{(1,2), (3,3)\}\times$
\n π
\n Jf |A| = n, then
\n Jf |A| = n, then

 $\hat{\boldsymbol{\beta}}$

€

Ç

Ć

€

S
S

 $\begin{array}{lllllllllllllll} \bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.2cm}&\bullet\hspace{0.$

 ϵ

 $\begin{array}{lllllllllllllllllllll} \bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} \bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} \bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\bullet\hspace{0.2cm} &\$

 $\begin{array}{c} \frac{1}{4} \\ \frac{1}{4} \end{array}$

$$
5 = \{ (1, 1), (2, 3), (3, 4) \} \} \times
$$
\n
$$
7 = \{ (1, 1), (2, 3), (3, 4) \} \} \times
$$
\n
$$
7 = \{ 1, 1, 2, 3, 4, 5 \} \times
$$
\n
$$
7 = \{ 1, 1, 2, 3, 4, 5 \} \times
$$
\n
$$
7 = \{ 1, 1, 2, 3, 4 \} \times
$$
\n
$$
7 = \{ 1, 1, 2, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 1, 2, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 2, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 3, 4 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \} \times
$$
\n
$$
8 = \{ 1, 4, 5, 6 \
$$

 $\hat{\boldsymbol{\beta}}$

 $\overline{}$ $\boldsymbol{\cdot}$

 $\overline{}$

E

Ç

C

 \bullet

 ϵ

 $\hat{\bm{\epsilon}}$

 \bullet

Syllabus $rac{5-6}{18-33}$ 1. Inforduction 2. Poder f Degree of the D.E. 3. Formation of D.D.E. 4. First Order and First depoce D.E. De (i) Separation of Variable (ii) Reducible to separation of variable (iii) Homogeneous D.E. (iv) Reducible to Homph. D.E. (v) Erac f + I.F. (vi) Reducible to Exect D. E. $\left(\sqrt{ii}\right)$ $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ (viii) Reductible L.D.E. (ix) Bernald' Egn First boder control bet not tirst dyre (Singular Sal") 5. Linear D. E. with constant Coefficient ϵ . Lincor D. E. with variable coefficient $7.$ 8. Wroschian + Zeros ~ 1 Uniqueneus & Enistance 1 Ť. Boundary Value Polle - 1 $10.$ $H.$ System of D.D.E. f (1) 18 , G_{θ} cen function.

 $Funcation$ Transedental hlina.
Kat $\triangle \&$ gebrois ein. Invest Extra log notice Rational irrational Piecewisch Trigona ¢. \downarrow \downarrow \downarrow Ę. Modulus Signum GI.I.F. L.I.F. F.P.F. (科) Dependent Variable : 4 Independent Variable: The variable whose Value is assigned is called independent variable **OR** t. Q F unction: Otrog clement indomain having a unique image in codemain. $\begin{array}{ccc}\n\circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ\n\end{array}$ VreA: Junique YEB such flot d=f(k).

 η :- $f(x)$ $y = f l w$ $11 - f(1)$ **De** Not unique 1×104 21 ... 3 n of a funct n $func^{\frac{1}{2}}$ \blacksquare \blacksquare Graphical defh: **D** $(\Gamma_{\rm II})$ A mapping $f:A\rightarrow B$ is called a function it any line passing Hoough domain and !! to y-auis should integent the curve y=flx) ■ enactly once. $1 - 1$ funct ? $\overrightarrow{A}: A \rightarrow B : \rightarrow I^{-1}$ $\boxed{\text{min of } L(x_1) = L(x_1)} \Rightarrow x_1 = x_1$ 泰德 $001x_17x_27712x_1771x_1$ $N - 1 - 1$

 S_{141} of $|x_1|$ = $\int |x_2| = \int |x_3|$ = $\frac{1}{\sqrt{2}}$ $x_1 = x_2 = x_3$ 杨建 'A funct^h fi A de B is celled 1-1, it fange
line passing though co-domain and 11 to x-anis
should interest the curve y-flu) at modonce. \mathcal{L}^{eff} $\sqrt{2}$ **SEA** $\frac{1}{\sqrt{2}}$ durct $\frac{n}{2}$ Raye = Codomain A function of : A -> B is called onto it any
line passing through co-domain and 11-n-airs slould ₹ \mathbf{M} $Dn-b$ $\frac{1}{\sqrt{u_1 c_1 + 1}}$ E $x :=$ $\int (x) - e^{x}$ $\overline{O}f\colon R\to R$ \sqrt{V} $\circled{f}: \mathbb{R} \rightarrow \mathbb{R}^+$ $\frac{1}{\sqrt{2}}$ $\begin{array}{c} \hline \mathbb{D} & \mathbb{1}: \mathbb{R}^d \rightarrow \mathbb{R} \end{array}$ $\sqrt{1}-\sqrt{8}$ \cdot (v) $f: R^{1} \rightarrow R^{1}$ \odot One. UNE 500 $\frac{1}{2}$ $N+$ orto

 $\begin{picture}(120,115) \put(0,0){\vector(1,0){30}} \put(15,0){\vector(1,0){30}} \put(15,0){\vector$ $f: \mathbb{R} \rightarrow \mathbb{R}^+$ j. ω f: $p + \pi$ \textcircled{f} \tilde{f}) 63. \overrightarrow{x} $\overline{\mathbb{R}}$. ħ, **Barnet A** 上にま F, $f(x) = x$ $(ii) -1 : \mathbb{R} \rightarrow \mathbb{R}^+$ \mathbb{R}^3 . (1777) **Francis** k. **And** Γ h y **Prop** $\overrightarrow{(j\vee l\dashv j\vee \negthickspace \uparrow)}\nrightarrow \overrightarrow{f}$ **Destru** $Fundn$ $On to$ $f(x) = x^2$ $1 - 1$ Fag Parte \times \times $04:RAPR$ en. $\textcircled{r} \text{ } f \colon \mathbb{R} \to \mathbb{R}^7$ $\boldsymbol{\mathcal{X}}$ $\overline{\chi}$ P. $\ddot{\cdot}$ $f:\mathbb{R}^{\dagger}\rightarrow\mathbb{R}$ χ **Form** $\widehat{(\cdot)}$ i i $f: \mathbb{R}^f \rightarrow \mathbb{R}$ \bigodot <u>ieni</u>

29 1 221 dr. $J=f(x)$ (x_i, λ) ċ 櫘 $\overline{\mathcal{H}}$ $\overline{\mathcal{H}}$ $\overline{\mathcal{H}}$ $\overline{\mathcal{H}}$ $\overline{\mathcal{H}}$ Δ my = $J_{2}-J_{1} = 0$ les fonce d/w $J_{1}4J_{2}$ $\frac{y_{1} - y_{1}}{y_{1} - y_{1}}$ = $s^{\int s}e^{-s^{\prime}-1}$ $\frac{\Delta J}{\Delta V}$ Q_{1} m A y $= 5$ lope of L when $P \rightarrow Q$ dr) = Objec 0+ tangent al print 4 Ġ 臠 鬛 É Graphical time De je brain ferm 囖 rocte of change da 6 Ġ ŧ. 医

Dale 9108/2019 ſ. Differentiel Equation r, Anger schwen dependent variable િ independent variable and contain total derivative of. િં D.V. of w. d. d. independent vasiable is celled D.T. R **Rep** $m_{2}=f(x,y)$ $\int_0^{\pi} 3i \, dx$ E_1 . E_2 L. $J_1 = f(x)$ $\frac{37}{36} + \frac{32}{38} = 0$ $0 7 - 14$ Į, $\frac{dJ}{du} + J = sin L \frac{dy}{dx} + J = sin L$ \mathbb{R} $\frac{\partial^2 Z}{\partial x^2} + \frac{\partial^2 Z}{\partial y^2} = \sin(x+y)$ **Brazil** $\frac{d^{2}y}{du^{2}} + \frac{d^{2}y}{du^{2}} = 0$ | \int imple P.D.E. $\frac{d\ddot{y}}{dx^{2}} + 4\alpha y = e^{y}$ **Page A** 殿 $\circled{1}$ $2_{1} = 4(x, y)$ 【務 $Z_1 = \mathcal{Y}(x, y)$ **T** $\frac{3^{2}2}{2x^{2}} + \frac{2^{2}2}{2x^{2}}$ \mathcal{L} L., $\frac{321}{37} + \frac{37}{34} = e^{117}$ 【编 Sqs^{t-m} of $P.D. E.$ 【纂 Ordinary differential egn. Amy differentiel en invlich of D.V. word. I.V. is called D.D.E. 热

 $H = f(x)$ $J = f Lx/$ ϵ_1 : $y_{2} = y(x)$ $\frac{d^{y}}{dt^{n}}-1$; $sin x$ KĨ $\frac{d^{4}y}{dx^{2}} + y_{2} = sin \ell$ **C** $\frac{d^{2}7}{d^{2}2} + f(u)Y = e^{y}$ 磁井 $\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$ $SinhL_{0}.L$!
镜题 S_{qs} fun of $0.0.6$. **ONES** B. Perfiel Differentiel em C Any D. E. contain partial **ORIGINAL** desivative is called partial D.E. \mathbb{R}^2 麗溪 **ABS** \mathcal{B} . riks. **e** Classification of D.E. Bł. 飈 $D \cdot E$. $(2, 1, 1)$ 潞 $(\mathcal{O} \cdot \mathcal{D} \cdot \mathsf{E} \cdot$ $P \cdot D \cdot E$. $D \cdot \nu$ $\bigoplus_{i=1}^k D_{i+1}$ $SimpleO.D.E$ 5 gstem of $SinfLe$ System & O O \cdot E . $P. D. E.$ $P.D.t.$

 $\frac{18}{6-7}$ \rightarrow $\frac{18.66}{8-22}$ I dy eliminating of 1. Formation of 1st order P.D.E. asbloomy constant I by climiningly of a rb. f unc f ⁿ J. First Doder P. D. E. I. (i) Lincar $\begin{pmatrix} w \\ w' \end{pmatrix}$ Semi-lines)
 $\begin{pmatrix} w' \\ w'' \end{pmatrix}$ $\begin{pmatrix} p_{u,s} & p_{u,s} \\ p_{u,s} & p_{u,s} \end{pmatrix}$ $\begin{pmatrix} p_{u,s} & p_{u,s} \\ p_{u,s} & p_{u,s} \end{pmatrix}$ $\begin{pmatrix} p_{u,s} & p_{u,s} \\ p_{u,s} & p_{u,s} \end{pmatrix}$ $\begin{pmatrix} p_{u,s} & p_{u,s} \\ p_{u,s} & p_{u,s} \end{pmatrix}$ $\begin{pmatrix} p_{u,s} & p_{u$ $\overline{\mathbb{R}}$ 3. Integrel surfoce pressing through a given euros -10 4. Surface 08-thogonal to surface 4. Surface Drikogonal to surface pitakolic
5. Class if readion of 2nd Drobr P. D. E. Jeliftic \sqrt{d} \equiv 5 6. P. D. E. with constant coefficient. O 7. Separation of variable 7 Heal egn F $-200/3$ O K. \rightarrow Laplace ϵ_{l} ⁿ. **Comparison** H^{ρ} is \longleftarrow

 $\frac{22}{24}$ = p, $\frac{22}{7}$ = p, $rac{3}{2}$ = 8, $rac{2^{2}z}{3\pi2y}$ = $\frac{3^{2}z}{3y^{2}}$ = 1

 $\frac{y}{x}$ 10 x Def. Partiel Differentiel Equation. An eg⁹ mich contains partial divivative of dependent variable w.r.t. two or more than two independ -nf variable, is called P.D.E. N ode: $N10.01$ D.V. = 1 M_0 of $I.V. \geq 2$ $\frac{21}{0}$ $\frac{32}{34}$ $+$ $\frac{32}{37}$ = K+J (i) $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$ Classification of Ist order P.D.E. A Ist order P.D.E. is said to belincer, if 1. Lincer: $if is Lines in 112 f2 and of the form$ $PLX, Y \nvert P + Y LX, Y \nvert P = PLX, Y | Z + SLY \nvert Y$ $\frac{1}{10}x + y = x + z + x^3$ $\circled{0}$ $\vdash + \rash = \sqrt{7}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ N or e :-Ogf SLXIV = D, then it is called homes lines 1 94 SLX17/7 0, then it is celled non-lomph lines P, D, E P, D, E

 $2.$ Semi lineer: -A 1st order P.D.E. is said to le semi lines $if if is linear in f f 2, but not necessary in z and$ of the form $P(x_i y)$ $p + 9(x_i y) = 2(x_i y_i z)$. $F = 12527$ (1) $x^2 + y^2 + y^2 = x^2 + z^2 - \rightarrow$ Semilinor A 1st order P.D.E. is said to be luege $J.$ \bigcup uassi Ω inas: -Dincar, if it is linear in \neq ff and of the $p(x, y, z)$ $p + 9(x, y, z)z = P(x, y, z)$ $f \circ \mathfrak{d}$ m $D + 2 = 4 + 2$ $(9 - 2)h + (2 - k)2 = k - \gamma$ $8^{2}P + (2-2)2 = 2^{2}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ 28
1. $P(x,y)$ ≥ 1 $P(x,y)$ $=$ $P(x,y)$ $=$ $15(x,y)$ $2^{ln(x,y)}$ 2. $P(x,y)$ $p + y(2y) = P(x,y)$ \longrightarrow semi-lines 3. $P(x, y) + P(x, y) = P(x, y, z)$ Liner C Semi-liner c Quest lines. $Delta t$

 $4.$ Non-lineer A Ist proler P.D.E. is said to be non-linear if it doesn't come under any one of the above types. e_1 0 $p_2 = 2^2$ \odot $h^22^1 = 1$ Formation of 1st order P.D.E.: by climinating of ask of ford by eliminating of asb^r constant 1. Bg eliminating of asb' constant: $Let F(x,y,z; a,t) = 0$ -0 Where a fb are arb² constant f 2 is dependent variable and $x + y$ avec independent variable. Differentiele partielle mont. Il front. J $\begin{array}{c}\n\hline\n\hline\n\end{array}$ F_1 $(x_1, y_1, z_1, \frac{3}{2}, z_1, a, k) = 0$ $F_{1} L_{1} T_{1} T_{2} \frac{\partial Z}{\partial q}$ / a, b) = 0 $we then
we get $\frac{p_{\text{min}}+2}{\Psi(\text{min}+p_{\text{max}}+1)}=0$$ e_{1}

 \Box

 $\overline{}$

ROW

J

Eg: Ibe P.D.E. representing theset of all sphere of unit radius with centre in the ry-plane is (i) yp-n-2=0 $[i] H P^2 + Z^2 = 0$ (iv) N.O.T. $\int 10^{x} e^{t} \left(1 + 10^{x} + 2^{x} \right) = 1$ $(x-a)^2+(y-b)^2+2^2=1$ $z+\frac{1}{2}$ $f(x-a) + 2zb = 0$ $7x-2=-25$ $H_{\alpha}q \int_{a}^{b} 3-k = -78$ $2^{2}b^{2}+2^{2}2^{2}+2^{2}=1$ $y 7^{2}1^{2}+2^{2}11=1$ $E_1 = 16$ P.D.E. for $2^{2}L14a^{3} = 8(L12a+1)^{3}$ is $(i/272=142)$ (i) $z = b^2 + 2^2$ $\int (v / 2 = 10^{3} + 2^3)$ (iii) 272 = p3 + 23 $Z^{2}\lfloor 1+a^{3}\rfloor = 8\lfloor x+a+1\rfloor^{3}$ $=$ \circ $g(112^3)ZP = JGL(2127+6)^Z$ $g(L12^{3})ZZ=24QL212743+8L$... Hatx12778 7401212776)] $7 \frac{2}{3}$

 -2 $\left(\begin{matrix}1\\1\end{matrix}\right)$ $\frac{z}{z^{b}} = \frac{1}{s}(x + a^{2} + b)$ x_1 a y_1 is $\frac{3}{2}$ \therefore $\left(2^{2}+\frac{2^{3}}{p^{3}}\right)=8x^{\frac{3}{2}+\frac{2^{3}}{8}}$ $y = \frac{b^3 + b^3}{b^2} = \frac{a+2}{b^3}$ $727 = 5372^3$ $\frac{2}{2}$
Part Dreft" w.r.d. x, $(2 - 64 - 8)$ Again partielly ditf" wird. y $2=-1$
<u>[21 | = 0</u>] $\frac{v^2}{a^2} + \frac{v^2}{b^2} + \frac{v^2}{c^2} = 1$ - 0 Casc-1) partially diff^h w.r.d. K, $-\left(\mathbf{H}^{\dagger}\right)$ $\frac{24}{a^{2}} + \frac{22}{c^{2}}$ b = 0 $y \frac{x}{a^2} + \frac{z}{c^2} = 0$ Again d'Afⁿ m. s.1. K $\frac{1}{a^{2}} + \frac{1}{a^{2}} \left(2\gamma + \frac{1}{a^{2}}\right) > 0$ $\frac{1}{2}$ $\frac{1}{a^2}$ = $\frac{-1}{c^2}$ (281).

 $-\frac{\kappa}{c^{2}}|z+|^{5^{2}}|+\frac{16}{c^{2}}=0$ $\int f \sim \textcircled{0}$ $(xz + x)^2 = zb$ $\begin{pmatrix} a_{1} & -11 \end{pmatrix}$. Partielly diffⁿ viol. J. $\frac{xy}{b} + \frac{222}{c} = 0$ $\frac{3}{b}2 + \frac{22}{c} = 0$ Again de Str m. t. t. y $\frac{1}{2}L + \frac{1}{C}L \left[2 + 12^{2} \right] = 0$ $\frac{1}{\sqrt{2}}L = \frac{1}{c^{2}}\left(2d + L^{2}\right)$ $\frac{1}{c^{2}}$ { $2 + 12^{1}$ + $\frac{72}{c^{2}} = 0$ $22 + 182 = 72$ Cascill Partilliely distinuons $\frac{u}{a}$ + $\frac{2u}{c}$ = 0 Apr de H " w. d. 4. J 0 -1 $\frac{1}{c}$ } 1st + p2 } 20 201 2 20 $\frac{107}{10}$ By eliminating asb¹⁸ constant, we can get both M of c ; non-lineer as well as yuasgi lineer. $(ii) No. of $axb1^x$ constant $= N_0$ of independent $+v$ and $bcn$$ than, me mill get unique pastiel D. E.

 $UniJ - I$ Chapter-1 - Sets of Jts Fundamentals Chapter- x^* Point set totalgy of $\mathbb R$ $Unif - 2$ 1 - Seprence 04 Real numbre 2 - Jesses of Real Number $Unid-J$ 1 - Fundamentals of functions 2 - Limits and Continuity 3 - Different iability 4 - Application of Devivative $Unid-4$ # - Sepannic of Function g - Series of Function $Unif - 5$ 1- Riemann Integrability 2 - Function of Bounded Variation $Unif-f$ 1. Function of Several Variables

 \equiv

-3

 $\frac{1}{2}$

 \rightarrow

 \rightarrow

 \bigcirc

 \Rightarrow

 $\ddot{\bullet}$

 $\ddot{\clubsuit}$

 \Rightarrow

 \Rightarrow

 $\ddot{}$

♦

 \clubsuit

€

 \bigoplus

۸

≜

E C E z. B E È S È È. ¥ S € ¢ C E e \bullet Ç

 \mathcal{L}^{eff}

 $\ddot{}$ $\mathcal{L}^{\text{max}}_{\text{max}}$ $\overline{}$ $\mathcal{A}^{\text{max}}_{\text{max}}$

Jets and its fundamentals $Chabler-T$ A well defined collection of distinct objects is called sets. Nhte: - 1 By well defined, we mean there is no
ambiguity or confusion regarding inclusion or (1) Empty collection is well defined so it is a set called void set Dr null set Dr empty set and denoted by $1 /$ or ϕ . (11) Seit itself considerates an object, hence eligible to collection for any set. (iv) Gienerally, sets are denoted by capital are denoted by small letters a, b, c, x, z, z etc and it a is an object included in the set X , α belongs to X and worde $a \in \mathcal{X}$ * Axiom of Regularity (AUR): Moset can belong
to itself i.e, if X is a set than X & X. Dodinary and Engre Ordinary Serls: $J + X$ is a set sid. XEX, X is called extre

-3

 \sim

 $\sum_{i=1}^n$

-3

ت

`ÿ

 $\ddot{\bullet}$

D

Ő

 \rightarrow

R

∙

 \vec{v}

۲

್ರ

 $\sum_{n=1}^{\infty}$

J

⊋

 \mathbf{Q}

っ

J

3

∍

Э

 $\overline{\mathbf{v}}$

 \mathbf{Q}

d

T

 \Rightarrow

ุื⇒

۳

्जु

A s-d is called ordinary if if doesn't condies
\n
$$
x = \{d \text{ is an element.}\}
$$

\n $x = \{d \text{ is an object: } d \text{ is not a } t = c\}$
\n $x \text{ is a set } \Rightarrow X \text{ is not a } t = c\}$
\n $\Rightarrow \text{Russell's } \text{fused} \circ x:$
\n $x = \{A : A \text{ is an ordinary set}\}$
\n $= \text{collection of all the ordinary sets}$
\n $g + X \text{ is each}$
\n $g + X \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is even}$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in any vertex of } x$
\n $\Rightarrow x \text{ is ordered in all the ordinary series}$
\n $x = \{A \text{ is exact} : A \notin A\}$
\n $\Rightarrow \text{The collection of all } A$
\n $\Rightarrow X \in X$
\n $\Rightarrow X \in X$

 5 ubsed: $-$ Led $A \nleftrightarrow B$ are sets, if $X \in A$ => $X \in B$, then we say A is a subsert of B denoted by $A \subseteq B$. D R , $f x \in A s.1. x \notin B$ Note: 10 Empty set is a subset of every set. To Every set is a subset of itself. \Rightarrow O A UB = { $x : x \in A$ $\forall x \in B$ } $\textcircled{a} \quad \text{and} \quad \text{if} \quad \$ $\textcircled{1}$ A-B= { $x: x \in A$, $x \notin B$ } $\circled{1}$ AAB = $(A-B) \cup (B-A)$ $= (A \cup B) - (A \cap B).$ $Q A^c = U - A$ (v) $(A \cup B)^c = A^c \cap B^c$ $(\widehat{\vee} \widehat{w})$ (ANB)^c = A^CU B^C (vii) $A=B \Leftrightarrow ACB \Leftrightarrow ABCA$. $*$ Power sed: -Let Abcased $P(A) = \{X : X \subset A\}$ = The set of all subsets of A.

 \sim

Y

J.

 \bullet

.

 $\overline{\bullet}$

 \rightarrow

 \bigtriangledown

 \vec{v}

 $\ddot{}$

 \clubsuit

Э

Э

€

ಾ

Э

c.
$$
f: L_{c}A A = \{a_{1}A_{1}c\}
$$

\n $f(A)=\}$ \emptyset , $\{a_{i}, b_{i}\}\$, $\{c_{i}, a_{i}, a_{i}, a_{i}, a_{i}\}\$
\n $\{a_{i}, b_{i}c\}$ $\}$
\n $\{a_{i}, a_{i}, b_{i}c\}$ $\}$
\n $\{a_{i}, a_{i}, b_{i}$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\ddot{}$

l,

 $\ddot{}$

 \therefore if $f: A \rightarrow B$ then, A is called domain \bigodot 1 B is called co-domain (iii) Il $x \in A$ is assigned to $y \in B$, we write $y = f(x)$ And y is called the image of u L re-presinge of 7. (i) $f(A) = \{f(x) : x \in A\} \subset B$ called the range of of. D. Dne-One function [Snjection]: $f(a) = f(b) \Leftrightarrow a = b$ (vi) Surjection (onto) $f(A) = B$. (vii) Bijection- Duc-one and onto. $N\sqrt{10}$ $J(n) = {1, 2, 3, -1, n}$. $Sinkry$ sets: \sim Two non-empty sets are said to be similed if j a bijection between them. Tre vords like equivalent, equinement, equipotentiel avecdoo used in the place of sim $/200$.

T.

-3

-9

`V

P

 \rightarrow

 \bullet

 \rightarrow

 \bullet

 \sum

d

 \mathbf{v}

G

 $\overline{\mathbf{v}}$

ə

G

Ģ

Э

 \bigodot

-)

 \bigodot

€

7

 \mathbf{r}

ु

4

ु

.

☜

BEE

B

CONTROLLED

 N o $4c$: D If A f B = 4 p , we say B has brove A to B can't be defined. We say A has more potential than A . $FiniteSef:$ A non-empty set is said to be finite if it is similar to 5n. a a a $if \quad A \sim S(n)$, we say cardinality of A is n, denoted by card $(A) = |A| = n$. \overline{u} \overline{u} Note: - Olday extension of defit of finite set, emply
set is also considered as finite set and its Ć cardinality is $1N_0 = 0, 1, 2, 3, \cdots$ ¢ = The set of all the finite cardinals. G E 1) The intersection of two power sets can't \mathbf{S}_j Le disjoint.

 $\label{eq:2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$

Ç,

C.